Perturbations of weighted shifts

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-HYPONORMALITY OF FINITE RANK PERTURBATIONS OF UNILATERAL WEIGHTED SHIFTS

Abstract. In this paper we explore finite rank perturbations of unilateral weighted shifts Wα. First, we prove that the subnormality of Wα is never stable under nonzero finite rank pertrubations unless the perturbation occurs at the zeroth weight. Second, we establish that 2-hyponormality implies positive quadratic hyponormality, in the sense that the Maclaurin coefficients ofDn(s) := detPn [(W...

متن کامل

Perturbations of Multidimensional Shifts of Finite Type

In this paper, we study perturbations of multidimensional shifts of finite type. Specifically, for any Z shift of finite type X with d > 1 and any finite pattern w in the language of X, we denote by Xw the set of elements of X not containing w. For strongly irreducible X and patterns w with shape a d-dimensional cube, we obtain upper and lower bounds on h(X) − h(Xw) dependent on the size of w. ...

متن کامل

On Polynomially Bounded Weighted Shifts

(1) ‖p(T )‖ ≤M sup{|p(ζ)| : |ζ| = 1} ∀ polynomial p, and to be power bounded (notation T ∈ (PW)) if (1) holds for every polynomial of the special form p(ζ) = ζ where n is a positive integer. If T ∈ (PB) [resp., T ∈ (PW)], then there is a smallest number M which satisfies (1) [resp., (1) restricted]. This number will be called the polynomial bound of T [resp., the power bound of T ] and denoted ...

متن کامل

Strongly Strictly Cyclic Weighted Shifts

An example is given of a unilateral weighted shift on complex Hubert space which is strictly cyclic but not strongly strictly cyclic. Similar examples of weighted shifts on the sequence spaces lp, for 1 < p < oo, are indicated.

متن کامل

Subnormality of Bergman-like Weighted Shifts

For a, b, c, d ≥ 0 with ad − bc > 0, we consider the unilateral weighted shift S(a, b, c, d) with weights αn := √ an+b cn+d (n ≥ 0). Using Schur product techniques, we prove that S(a, b, c, d) is always subnormal; more generally, we establish that for every p ≥ 1, all p-subshifts of S(a, b, c, d) are subnormal. As a consequence, we show that all Bergman-like weighted shifts are subnormal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1974

ISSN: 0022-247X

DOI: 10.1016/0022-247x(74)90158-9